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Abstract

Accurate prediction of pathogenic missense variants is a key step in the
advancement of genetic studies, clinical diagnosis, and drug design. One
of the ways to improve the accuracy of pathogenicity prediction models
is by feature engineering, extracting new features or modifying existing
features to capture more relevant and biologically significant properties of
missense variants and their potential impact on protein function. Here,
we present various protein structural features correlated with pathogenic
missense variants using new analytical methods with a larger, better-
curated data set. By analyzing the protein structures of 20,000 missense
variants from the Humsavar database, we find the structural significance
of the protein’s core for determining pathogenicity and numerous solvent
accessibility features associated with pathogenic missense variants.
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1 Introduction

Missense variants, in which a single nucleotide change leads to a different amino acid
being incorporated into the resulting protein, are the most common type of genetic
variants and a major cause of various diseases. However, not all missense variants
are disease-associated. Depending on the location of the variant, the specific amino
acid substitution, and the functional role of the affected protein, missense variants
can either be benign or pathogenic. Therefore, accurate identification of pathogenic
missense variants is a critical step for early diagnosis, risk assessment, and the devel-
opment of effective treatment strategies for genetic diseases.

Recent advancements in machine learning and natural language processing have
significantly enhanced our ability to predict the pathogenicity of missense variants
based on various protein features such as properties of the amino acid sequence and
protein structure. One of the ways to continue improving the prediction power of
missense variant pathogenicity prediction models is through feature engineering, by
including additional features or modifying the existing features to capture more rele-
vant characteristics of missense variants and their impact on protein function. To do
so, we focus on deducing more complex and specific protein structural features that
are statistically correlated with the pathogenicity of missense variants.

Previous studies [1, 2] found that disease-associated variants tend to occur in the
conserved regions of the protein, and missense variants that cause a change in charge,
especially those that introduce a charged residue into the protein core, are more likely
to be pathogenic using less than 5000 missense variants in an uncurated database.
However, a clear distinction between variants occurring in the core and those on the
surface of a protein and their correlations with pathogenicity are absent, and not
enough data have been studied. Moreover, other studies [2, 3] found that benign mis-
sense variants tend to have a higher average relative solvent accessibility (RSA) score
than pathogenic variants. Yet, the average RSA score, accounting for all the residues
in the wild type amino acid sequence, does not consider local patterns at different
locations in the protein structure and the change of structure after the variant.

In this work, we examine various influences of the solvent accessibility of amino
acid residues on the pathogenicity of the missense variants. Solvent accessibility, re-
ferring to the extent to which an amino acid residue in a protein is exposed to solvent
or buried within the protein structure, provides important information about the pro-
tein’s structure, function, and stability. We randomly sampled 10,000 benign and
10,000 pathogenic missense variants from the Humsavar database, an extraction of all
human missense variant entries from the UniProtKB/Swiss-Prot database which are
extensively curated with annotations generated through experimental methods. To
obtain the corresponding structural information and solvent accessibility values, we
input the amino acid sequence data into a deep-learning protein structure prediction
model called NetSurfP-3.0. We present two main findings: (1) pathogenic missense
variants tend to occur in the core of the protein whereas benign missense variants tend
to occur at the surface of the protein, and (2) benign missense variants tend to have
a higher average delta RSA value near by the variant site.

Biologically, the core of the protein includes regions that are responsible for main-
taining the structural stability of the protein and protein-protein interactions. There-



fore, pathogenic variants occurring in these core regions can destabilize the protein’s
entire structure, leading to a loss of function or toxic effects on cellular processes. On
the other hand, benign variants tend to occur on the surface of the proteins because
these regions have less of an effect on protein function and stability and do not in-
terfere with these crucial interactions. Furthermore, as benign variants occur at the
surface of proteins, they are more likely to cause changes to the protein’s interaction
with its environment, thereby causing an increase in the average RSA value near the
variant site.

2 Materials and Methods

Protein Folding Model. NetSurfP-3.0 [6] is a pre-trained protein language model
that predicts the solvent accessibility, secondary structure, structural disorder, and
backbone dihedral angles of each residue in a protein given its amino acid sequence.
While attaining state-of-the-art prediction accuracy, NetSurfP-3.0 is also a time-efficient
model.

This model is freely available as a web server and can as well be downloaded as a
standalone local package. More information can be found on the web server:
https://services.healthtech.dtu.dk/services/NetSurfP-3.0/.

Humsavar Database. To evaluate statistically significant protein structural fea-
tures correlated with the pathogenicity of missense variants, we analyze the Humsavar
database, a public database maintained by Universal Protein Resource (UniProt) that
catalogs and curates all human missense variants in UniProtKB/Swiss-Prot human
entries and their associated disease information.

Fig. 1 The first couple entries in the humsavar database

LP/P: 32081
LB/B: 39607
us: 9684
Total: 81372
Main Swiss-Prot AA Variant
gene name AC FTId change category dbSNP

Disease name

A1BG P4217 VAR_018369 p.His52Arg LB/B rs893184
ALBG P04217 VAR_018370 p.His395Arg  LB/B rs2241788
ALCF Q9NQ94 VAR_052201 p.Val555Met  LB/B rs9073
ALCF Q9NQ94 VAR_059821 p.Ala558Ser  LB/B rs11817448
A2M P01023 VAR_000012 p.Arg704His  LB/B rs1800434
A2M P01023 VAR_000013 p.Cys972Tyr  LB/B rs1800433
A2M P01023 VAR_000014 p.Ilel000Val LB/B rs669

A2M P01023 VAR_026820 p.Asn639Asp  LB/B rs226405

For each missense variant, this database lists the gene name, Swiss-Prot AC (an access number
labeled by Swiss-Prot for every protein), FTId (a set of variant identification numbers), AA Change
(the amino acid change and its location), Variant Category (LB/B for likely benign or benign
variants, LP /P for likely pathogenic or pathogenic variants, US for unclassified variants), and dbSNP
(the variant identification number in the Single Nucleotide Polymorphism Database).



Processing Input Data. To process this data, we removed all the unclassified
missense variants, randomly shuffled the data set, and obtained the full-length wild
type amino acid sequence for 10,000 benign and 10,000 pathogenic missense variants,
each with less than 1022 residues. The corresponding mutant amino acid sequences
are computed using the “AA Change” column in Humsavar and the variant category
is denoted a “0” for benign variants and a “1” for pathogenic variants. Both wild type
and mutant sequences are input into NetSurfP-3.0 to obtain the solvent accessibility
values for each amino acid residue and Fig. 2 is created for both the benign and
pathogenic sequences:

Fig. 2 The first couple entries of the processed data

ID N J seq_w seq_m rsa_w rsa_m delta_rsa

>sp_P04217_A1BG 1 51 M M 0.68839943 0.68995637 -0.0015569
>sp_P04217_A1BG 2 50 S N 0.62953651  0.6337024 -0.0041659
>sp_P04217_A1BG 3 49 M M 0.54539949 0.54942077 -0.0040213
>sp_P04217_A1BG 4 48 L L 0.51880127 0.52403903 -0.0052378
>sp_P04217_A1BG 5 47 v \ 0.4774645 0.4812237 -0.0037592
>sp_P04217_A1BG 6 46 V v 0.45158371 0.44934663 0.00223708
>sp_P04217_A1BG 7 45 F F 0.47816885 0.4720661 0.00610274
>sp_P04217_A1BG 8 44 L L 0.46410516 0.46182725 0.00227791
>sp_P04217_A1BG 9 43 L L 0.45797655 0.46324718 -0.0052706
>sp_P04217_A1BG 10 42 L L 0.4655211 0.47001401 -0.0044929
>sp_P04217_A1BG 11 41 W w 0.49386564 0.49343818 0.00042745
>sp_P04217_A1BG 12 40 G G 0.4888474 0.49046928 -0.0016219
>sp_P04217_A1BG 13 39 v v 0.48220345 0.48448703 -0.0022836
>sp_P04217_A1BG 14 38T T 0.56396109 0.56693679 -0.0029757
>sp_P04217_A1BG 15 37 W w 0.495224  0.4986504 -0.0034264
>sp_P04217_A1BG 16 36 G G 0.50519627 0.50364113 0.00155514

The columns are, respectively, ID: Swiss-Prot access number, N: an ascending order of residues,
J: distance from the variant site (negative for residues after the variant), seq-w: the residue in the
wild type sequence, seq-m: the residue in the mutant sequence, rsa_w: relative solvent accessibility
for the corresponding residue in the wild type sequence, rsa-m: relative solvent accessibility for the
corresponding residue in the mutant sequence, delta_rsa: rsa.m — rsa.w (a measure of structural
change).

Data Availability. The Humsavar data set for all human missense variants with
their corresponding disease information can be downloaded from:
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/comp
lete/docs/humsavar.txt.

Code Availability. The full Python script for the processed data and figures is
available on Github: https://github.com/shashuo0104/Protein-Features-Analysis.

3 Results

In paper [7], the authors analyzed the results from the Critical Assessment of Protein
Structure Prediction (CASP) competition, where contestants designed algorithms to
predict the 3D structure of an unknown amino acid sequence, and found models that
accurately predicted the structure of the protein’s core correctly tend to yield a signifi-
cantly higher overall prediction accuracy than those that cannot. Yet, a protein’s core
only occupies a small portion of the entire area, thereby emphasizing the structural
significance of its core.

The same structural significance is present for pathogenicity interpretations. Though
proteins differ in size, we can generally assume that residues with relative solvent ac-



Fig. 3 Distribution of RSA values at variant site
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The graph on the left is the distribution of initial RSA values at the variant site before the variant
has occurred, where the blue area represents the distribution of benign sequences, the red area
represents the distribution of the pathogenic sequences, and the darker area represents the overlap
between the two. The graph on the right is plotted the same way but for the distribution of final
RSA values at the variant site after the variant has occurred. The x-axis is the initial/final RSA
values (A) evenly distributed in 40 bins and the y-axis is the frequency of each corresponding bin.

cessibility < 0.1 are buried in the core of the protein, enabling us to plot the frequency
of the solvent accessibility before and after the variant for the benign and pathogenic
sequences in Fig. 3. We found that pathogenic missense variants tend to occur in the
core of the protein whereas benign missense variants tend to occur across the protein,
typically at its surface, both before and after the variant.

In Fig. 3, though most benign sequences occur at the outer surface of the protein,
the rest of the sequences mainly occur in the core of the protein, with very few located
at the inner surface. Evaluating the effect of the variant, pathogenic variants tend to
slightly shift toward the surface and benign variants tend to shift toward the core.

Fig. 4 Distribution of absolute delta RSA values with distance
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The graph on the left plots the distribution of the absolute value of the average delta RSA values
at every value of J, where the blue curve represents the values for the benign sequences and the
red curve represents the values for the pathogenic sequences. Since amino acid sequences differ in
length, every sequence is first stretched to the same length by adding a “N/A” to the absent J
values. The graph on the right shows a zoomed in view of the previous plot near the variant site,
from -75 to +75 residues away from the variant site.



Mostly consistent with the study [5], we found that the absolute delta RSA de-
creases significantly with distance for the first 10-15 residues and decreases more grad-
ually at greater distances in Fig. 4. However, using the absolute value of the average
delta RSA value at every location is a unique approach and involves mathematical
significance - it accounts for the absolute magnitude which avoids large values of op-
posite signs from canceling out when only taking the average. In effect, this operation
smooths out the curve and produces a more apparent pattern. In Fig. 4, with a larger
data set than study [5], we also found that benign variants tend to have a larger delta
RSA value at the variant site than pathogenic variants, indicating a larger, overall
structural change. At distances near £+ 1000 residues, the absolute delta RSA values
fluctuated owing to the lack of enough input sequence data close to 1022 residues.

The finding in Fig. 4 is a crucial step toward determining the statistically sig-
nificant distance from the variant site when considering the effect of delta RSA on
pathogenicity. As delta RSA approaches 0 after the first 20 residues, we plot Fig. 5
by computing the average delta RSA value of the 20 residues closest to the variant site.

Fig. 5 Probability density of average delta RSA values near the variant
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The graph on the left shows the probability distribution of the average delta RSA values of the 20
residues closest to the variant using 80 evenly distributed bins, where the blue area represents the
probability distribution for the benign sequences and red area represents the probability distribu-
tion for the pathogenic sequences. The two curves are the Kernel smoothing of the corresponding
histograms. The graph on the right is plotted the same way but using logarithmic bins, which shows
more detailed distributions near X = 0 in an exponential manner.

Bisecting Fig. 5 at delta RSA = 0, we found that benign missense variants tend to
have a higher average delta RSA value than pathogenic missense variants, consistent
with the height differences in the peaks of Fig. 4. As the magnitude of average delta
RSA measures the potential impact of the missense variant on the protein’s structure
and function, the difference in the heights of the peaks indicates that pathogenic mis-
sense variants are more disruptive to a protein’s folding, stability, and interaction with
other molecules. Since delta RSA is densely distributed near zero, the figure on the
right describes a clearer and magnified pattern using logarithmic bins.

However, the absolute delta RSA method does not account for the magnitude of
the original RSA value - a large absolute difference might be, after all, less significant
owing to a relatively large final or initial value. Therefore, we propose to use rela-



tive RSA value (—£-""%%) for a more accurate and localized determination of general
patterns. In fact, this complements the calculation of RSA, which accounts for the
maximum solvent accessibility relative to that protein type, by now considering the
relative change in solvent accessibility given both the original composition and protein

type.

Fig. 6 Probability density of relative RSA values near the variant site
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This graph shows the probability density of the relative RSA values, calculated by

rsa; ’
where rsay is the average final RSA values of the 20 residues near the variant site and rsa; is
the average initial RSA values of the 20 residues near the variant site. In the plot, the blue curve
represents the distribution of the benign sequences and the red curve represents the distribution of
the pathogenic sequences. The x-axis is plotted using logarithmic bins to show a clearer pattern
near X = 0.

In Fig. 6, we found that pathogenic missense variants either have extremely large
or small delta RSA values relative to their initial RSA values, indicating their dele-
terious nature. On the other hand, benign missense variants have delta RSA values
that distribute evenly relative to their initial RSA values, which are less disruptive in
general.

4 Discussion

We developed various statistical correlations between specific protein features associ-
ated with missense variants and their pathogenicity which contribute to the feature
engineering of pathogenicity prediction models using 20,000 missense variants from a
curated clinical database. Using the predictions results of NetSurfP-3.0, we showed
that pathogenic missense variants tend to occur in the core of the protein, benign
missense variants tend to occur at the surface of the protein, and these patterns are
consistent after the impact of the variant.

Since studies [3, 12, 13, 14] have found that pathogenic variants are more dis-
ruptive to protein’s structure and function than benign variants, they tend to occur
in the core because it is a region that can destabilize the overall structure, interfere



with protein-protein interactions, or disrupt enzymatic activity. On the other hand,
benign variants tend to occur on the surface which has higher solvent accessibility and
can tolerate more variation without disrupting protein function. This conclusion not
only enhances the accuracy of previous studies by using 4 times more input data and
better-curated database but also contributes to the development of machine learning
pathogenicity prediction models.

This finding emphasizes that future pathogenicity prediction models should ex-
plicitly account for the specific location of the variant rather than simply considering
the conserved areas of a protein to further improve prediction accuracy. Currently,
state-of-the-art models like MVP [8] and mCSM-membrane [9] have directly accounted
for the location of the missense variant as a feature, whereas PROVEAN [10], SIFT
[11], and Mutation Assessor [12] indirectly consider the location information through
the level of protein conservation at the variant site, and PolyPhen-2 [3] analyzes lo-
cation through the proximity of functional sites. Though this information provides a
functional significance of a particular amino acid residue, it does not directly indicate
the location of the residue within the protein structure, which is a crucial feature as-
sociated with pathogenicity.

Consistent with previous findings [5], we also validated that absolute delta RSA
values decrease significantly with distance for the first 10-15 residues and decrease
more gradually at further distances with a larger, curated data set. Armed with the
pattern, we found a more accurate and efficient method to analyze the overall RSA
score for a missense variant. Previous studies [5] simply computed an average initial
RSA value for all residues, which does not capture the effect of the variant. How-
ever, we accounted for the impact of the variant by plotting the probability density of
the change in RSA value. Then, we considered the localized pattern along with the
influences of the variant through the relative RSA value which evaluates the solvent
accessibility difference centering at the initial RSA value. Instead of considering the
entire sequence, we only used a couple of residues near the variant site to attain a
more in-depth conclusions about both the entire variant’s structural alterations and
local patterns.

Though NetSurfP-3.0 achieves state-of-the-art prediction efficiency and accuracy, it
cannot formulate greater than 40 protein sequences with more than 1022 residues. This
also caused fluctuations in Fig. 4 as the number of sequences of length close to 1022 is
lacking. Future studies should continue to validate and extend the current conclusions
using protein sequences larger than 1022 residues. Furthermore, the input data from
the Humsavar database can also be categorized based on their disease information.
Studies can also further filter the input data and select sequences with greater clinical
significance to better suit the more practical applications of pathogenicity prediction
models. Lastly, studies can actually generate the 3D protein structures of the wild
type and mutant amino acid sequences using AlphaFold [15] to conduct further analysis
with rSASA, a more absolute measure of solvent accessibility that takes into account
of the size and shape of the residue.



References

[1] Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural net-
work for quantifying the function of DNA sequences. Nucleic Acids Res. 2016 Jun
20;44(11):e107. doi: 10.1093/nar/gkw226. Epub 2016 Apr 15. PMID: 27084946;
PMCID: PMC4914104.

[2] Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE.
Can Predicted Protein 3D Structures Provide Reliable Insights into whether Mis-
sense Variants Are Disease Associated? J Mol Biol. 2019 May 17;431(11):2197-
2212. doi: 10.1016/j.jmb.2019.04.009. Epub 2019 Apr 14. PMID: 30995449; PMCID:
PMC6544567.

[3] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kon-
drashov AS, Sunyaev SR. A method and server for predicting damaging missense
mutations. Nat Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248. PMID:
20354512; PMCID: PMC2855889.

[4] Sasidharan Nair P, Vihinen M. VariBench: a benchmark database for variations.
Hum Mutat. 2013 Jan;34(1):42-9. doi: 10.1002/humu.22204. Epub 2012 Oct 11.
PMID: 22903802.

[5] Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-
synonymous SNVs and their functional predictions and annotations. Hum Mutat.
2013 Sep;34(9):E2393-402. doi: 10.1002/humu.22376. Epub 2013 Jul 10. PMID:
23843252; PMCID: PMC4109890.

[6] Magnus Haraldson Hgie, Erik Nicolas Kiehl, Bent Petersen, Morten Nielsen, Ole
Winther, Henrik Nielsen, Jeppe Hallgren, Paoclo Marcatili, NetSurfP-3.0: accurate
and fast prediction of protein structural features by protein language models and
deep learning, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages
W510-W515, https://doi.org/10.1093 /nar/gkac439

[7] Grigas, AT, Mei, Z, Treado, JD, Levine, ZA, Regan, L, O’Hern, CS. Using physical
features of protein core packing to distinguish real proteins from decoys. Protein
Science. 2020; 29: 1931- 1944. https://doi.org/10.1002/pro.3914

[8] Qi, H., Zhang, H., Zhao, Y. et al. MVP predicts the pathogenicity of missense vari-
ants by deep learning. Nat Commun 12, 510 (2021). https://doi.org/10.1038/s41467-
020-20847-0

[9] Douglas E V Pires, Carlos H M Rodrigues, David B Ascher, mCSM-
membrane: predicting the effects of mutations on transmembrane proteins, Nu-
cleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W147-W153,
https://doi.org/10.1093 /nar/gkaad16

[10] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect
of amino acid substitutions and indels. Bioinformatics. 2015 Aug 15;31(16):2745-7.
doi: 10.1093/bioinformatics/btv195. Epub 2015 Apr 6. PMID: 25851949; PMCID:
PMC4528627.

[11] Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein func-
tion. Nucleic Acids Res. 2003 Jul 1;31(13):3812-4. doi: 10.1093/nar/gkg509. PMID:
12824425; PMCID: PMC168916.

[12] Boris Reva, Yevgeniy Antipin, Chris Sander, Predicting the functional impact of
protein mutations: application to cancer genomics, Nucleic Acids Research, Volume
39, Issue 17, 1 September 2011, Page €118, https://doi.org/10.1093 /nar/gkrd07



[13] Kumar, P., Henikoff, S. Ng, P. Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm. Nat Protoc 4, 1073-1081
(2009). https://doi.org/10.1038 /nprot.2009.86

[14] Li J, Shi L, Zhang K, Zhang Y, Hu S, Zhao T, Teng H, Li X, Jiang Y, Ji L,
Sun Z. VarCards: an integrated genetic and clinical database for coding variants
in the human genome. Nucleic Acids Res. 2018 Jan 4;46(D1):D1039-D1048. doi:
10.1093 /nar/gkx1039. PMID: 29112736; PMCID: PMC5753295.

[15] Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure predic-
tion with AlphaFold. Nature 596, 583-589 (2021). https://doi.org/10.1038 /s41586-
021-03819-2

[16] Front. Mol. Biosci., 10 March 2021 Sec. Biological Modeling and Simulation.
Volume 7 - 2020. https://doi.org/10.3389/fmolb.2020.620554

[17] Gao M, Zhou H, Skolnick J. Insights into Disease-Associated Mutations in
the Human Proteome through Protein Structural Analysis. Structure. 2015 Jul
7;23(7):1362-9. doi: 10.1016/j.str.2015.03.028. Epub 2015 May 28. PMID: 26027735;
PMCID: PMC4497952.

[18] Livesey BJ, Marsh JA (2022) The properties of human disease muta-
tions at protein interfaces. PLOS Computational Biology 18(2): e1009858.
https://doi.org/10.1371 /journal.pcbi. 1009858

[19] Woodard J, Zhang C, Zhang Y. ADDRESS: A Database of Disease-associated
Human Variants Incorporating Protein Structure and Folding Stabilities. J Mol
Biol. 2021 May 28;433(11):166840. doi: 10.1016/j.jmb.2021.166840. Epub 2021 Feb
2. PMID: 33539887; PMCID: PM(C8119349.

[20] Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn
JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein
Sci. 2019 Aug;28(8):1400-1411. doi: 10.1002/pro.3667. Epub 2019 Jul 1. PMID:
31219644; PMCID: PMC6635777.

10



